Total Synthesis of (-)-Ardeemin

Bin He, Hao Song, Yu Du, and Yong Qin*
Department of Chemistry of Medicinal Natural Products, Key Laboratory of Drug Targeting and Novel Delivery System of Ministry of Education, West China School of Pharmacy, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, P. R. China
yongqin@scu.edu.cn

Received October 5, 2008

Total synthesis of potent anti-MDR indole alkaloids (- -ardeemin and its N-acyl analogues has been accomplished from L-tryptophan with about 2% overall yield in 20 steps. The key step depended on the newly developed three-step one-pot cascade reaction of 7 with diazoester $\mathbf{8}$ via intermolecular cyclopropanation, ring opening, and ring closure to assemble the chiral 3-substituted hexahydropyrrolo[2,3b]indole 4a.

Introduction

Indole alkaloid ardeemins (Figure 1, 1-3), isolated from the fermentation of a strain of Aspergillus fischeri by McAlpine and co-workers in 1993, ${ }^{1}$ have demonstrated a potent ability to reverse multi-drug resistance (MDR). ${ }^{2}$ For example, combining the use of N-acetylardeemin $2(10 \mu \mathrm{M})$ with vinblastine, the cytotoxicity of vinblastine against a drug-resistant KBV-1 tumor cell line was enhanced more than 1000-fold compared with using vinblastine alone. Notably, $\mathbf{2}$ was 10 -fold more effective than a well-known MDR modulator of verapamil ${ }^{3}$ in in vitro experiments. The promising MDR reversal activity of ardeemins has attracted the interest of synthetic chemists. Structurally, ardeemins contain a fundamental skeleton of 3 -substituted hexahydro-pyrrolo[2,3-b]indole (4). Although a variety of methods have been reported for preparing racemic ${ }^{4}$ and chiral ${ }^{5} 3$-substituted hexahydropyrrolo[2,3-b]indole in the past 2 decades, up to now, only Danishefsky's group accomplished an elegant total syn-

[^0]thesis of (- -ardeemin by using the N-phenylselenophthalimide induced selenocyclization of tryptophan as a key step to construct the chiral 3-selenenylated hexahydropyrrolo[2,3$b]$ indole. ${ }^{6}$
(4) (a) Mukai, C.; Yoshida, T.; Sormachi, M.; Odani, A. Org. Lett. 2006, 8, 83. (b) Padwa, A.; Nara, S.; Wang, Q. J. Org. Chem. 2005, 70, 8538. (c) Kawasaki, T.; Ogawa, A.; Terashima, R.; Saheki, T.; Ban, N.; Sekiguchi, H.; Sakaguchi, K.; Sakamoto, M. J. Org. Chem. 2005, 70, 2957.
(5) (a) López, C. S.; Pérez-Balado, C.; Rodríguez-Graña, P.; de Lera, Á. R. Org. Lett. 2008, 10, 77. (b) Crich, D.; Banerjee, A. Acc. Chem. Res. 2007, 40, 151. (c) Trost, B. M.; Zhang, Y. J. Am Chem. Soc. 2006, 128, 4590. (d) Austin, J. F.; Kim, S.-G.; Sinz, C.-J.; Xiao, W.-J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2005, 101, 5482. (e) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 4592. (f) Marales-Rios, M. S.; RiveraBecerril, E.; Joseph-Nathan, P. Tetrahedron: Asymmetry 2005, 16, 2493. (g) Huang, A.; Kodanko, J. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 14043. (h) Takayama, H.; Matsuda, Y.; Masubuchi, K.; Ishida, A.; Kitajima, M.; Aimi, N. Tetrahedron 2004, 60, 893. (i) Kawasaki, T.; Ogawa, A.; Takashima, Y.; Sakamoto, M. Tetrahedron 2003, 44, 1591. (j) Schiavi, B. M.; Richard, D. J.; Joullie, M. M. J. Org. Chem. 2002, 67, 620. (k) Elazab, A. S.; Taniguchi, T.; Ogasawara, K. Org. Lett. 2000, 2, 2757. (1) Kawahara, M.; Nishida, A.; Nakagawa, M. Org. Lett. 2000, 2, 675. (m) Ashimori, A.; Bachand, B.; Calter, M. A.; Govek, S. P.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6488. (n) Matsuura, T.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6500. (o) Pallavicini, M.; Valoti, E.; Villa, L.; Lianza, F. Tetrahedron: Asymmetry 1994, 5, 111. (p) Ashimori, A.; Matsuura, T.; Overman, L. E.; Poon, D. J. J. Org. Chem. 1993, 58, 6949. (q) Pallavicini, M.; Valoti, E.; Resta, I. Tetrahedron: Asymmetry 1993, 3, 363. (r) Bhat, B.; Harrison, D. M. Tetrahedron 1993, 49, 10655. (s) Yu, Q.-S.; Luo, W.-M.; Li, Y.-Q. Heterocycles 1993, 36, 1279. (t) Marino, J. P.; Kimura, K. J. Am. Chem. Soc. 1992, 114, 5566. (u) Lee, T. B. K.; Wong, G. S. K. J. Org. Chem. 1991, 56, 872.
(6) (a) Depew, K. M.; Marsden, S. P.; Zatorska, D.; Zatorski, A.; Bornmann, W. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11953. (b) Marsden, S. P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc. 1994, 116, 11143.

$\operatorname{Ardeemin}(\mathbf{1}), \mathrm{R}^{1}=\mathbf{1 I}, \mathrm{R}^{2}=\mathbf{1 1}$;
5- N -Acetylardeemin (2), $\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{H}$;
15b-Hydroxy-5-N-acetylardeemin (3), $\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{OH}$
FIGURE 1. Structures of ardeemins.
SCHEME 1. Intermolecular Cyclopropanation of the Three-Step One-Pot Cascade Reaction ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 90 \%$; (b) triphosgene, aqueous $\mathrm{KOH}, \mathrm{THF}, 84 \%$; (c) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, 75 \%$; (d) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4}$, MeI, 91%; (e) TFA, 85%; (f) 1 mmol of 7,4 equiv of $\mathbf{8}, 5 \mathrm{~mol} \%$ of $\mathrm{Cu}(\mathrm{OTf})_{2},-35^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~h}, 82 \%$ of $\mathbf{4 a}$ and 5% of $\mathbf{4 b}$.

We have recently reported the total synthesis of the complex polycyclic indole alkaloids (\pm)-communesin F^{7} and (\pm)minfiensine ${ }^{8}$ by employing an intramolecular cyclopropanation strategy. As a continuation of our methodology development and application, we demonstrated an approach to chiral 3-substituted hexahydropyrrolo[2,3-b]indoles $\mathbf{4 a}$ and $\mathbf{4 b}$ from oxazolidinone 7 via a three-step one-pot cascade reaction of intermolecular cyclopropanation, ring opening, and ring closure in a high yield and in a high diastereoselectivity (Scheme 1). ${ }^{9}$ Through this approach, three stereocenters of the major isomer 4a corresponding to the $\mathrm{C} 5 \mathrm{a}, \mathrm{C} 15 \mathrm{~b}$ and C 16 a of $(-)$-ardeemins were created. Herein, we wish to report our further efforts on the application of the intermolecular cyclopropanation of a threestep one-pot cascade reaction to the total synthesis of (-)ardeemin, (-)- N -formalardeemin, and (-)- N -acetylardeemin.

Results and Discussion

Previously, a preparation of oxazolidinone 7 from L-tryptophan through a five-step reaction resulting in a 44% overall yield was not straightforward and required chromatographic separation and the use of expensive $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (Scheme 1). ${ }^{9}$ In order to make the procedure more practical, a new synthetic

[^1]SCHEME 2. Improved Synthesis of Oxazolidinone 7 and $4 \mathbf{a}^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{NH}_{3} / \mathrm{Na}, \mathrm{MeI},-60^{\circ} \mathrm{C}, 92 \%$; (b) LiAlH_{4}, THF, rt; (c) triphosgene, 10% aqueous KOH, THF, 78% for two steps; (d) $\mathrm{Cu}(\mathrm{OTf})$-tolulene, toluene, $25^{\circ} \mathrm{C}, 45 \%$ yield of $\mathbf{4 a}$ and 28% yield of $\mathbf{4 b}$.
approach to 7 from L-tryptophan was developed via a threestep reaction. As shown in Scheme 2, direct alkylation of L-tryptophan with MeI under a condition of liquid $\mathrm{NH}_{3} / \mathrm{Na}$ gave the N -methyl-protected $\mathbf{1 1}$ in a 92% yield. ${ }^{10}$ Reduction of $\mathbf{1 1}$ with LiAlH_{4} gave amino alcohol 12 in high yield. Without purification, compound $\mathbf{1 2}$ was treated with triphosgene under an aqueous basic condition in THF, followed by recrystallization from ethyl acetate to afford 7 in a 78% yield in two steps. By this new approach, the overall yield of 7 from L-tryptophan increased by 28% compared to the previously used five-step procedure. The three-step procedure was readily implemented on a 200 g scale without chromatographic separation.

For the synthesis of $(-)$-ardeemin, a large quantity of the key intermediate 4a was expected to be produced from 7. Therefore, the efficiency of the three-step one-pot cascade reaction of $\mathbf{7}$ with diazoester $\mathbf{8}$ was reevaluated at a larger scale rather than the previous small scale (1 mmol). Unfortunately, although a similar ratio of $\mathbf{4 a}$ to $\mathbf{4 b}(20: 1)$ was observed, ${ }^{9}$ direct application of the previous condition (4 equiv of diazoester $\mathbf{8}$, 0.05 equiv of $\mathrm{Cu}(\mathrm{OTf})_{2},-35^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was not successful at a 50 g scale. A low yield of 4 a (22% yield) was obtained as a result of the formation of a large quantity of dark precipitates and rapid non-productive decomposition of diazoester 8. Because the first step of the cyclopropanation reaction was very sluggish at low temperatures in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to efficiently promote the first step of the cyclopropanation reaction and to avoid the formation of precipitates, the cascade reaction has to be performed at room temperature. To our delight, in the presence of 0.2 equiv of freshly made $\mathrm{CuOTf}-$ toluene complex in toluene, the cascade reaction proceeded smoothly for 6 h to give $\mathbf{4 a}$ in a 45% yield and $\mathbf{4} \mathbf{b}^{11}$ in a 28% yield at a 50 g scale when 4 equiv of $\mathbf{8}$ was used (Scheme 2).

With easily available pyrroloindole $\mathbf{4 a}$ in hand, our next task was to transfer the ethyl acetate group in $\mathbf{4 a}$ to an isoprenyl group (Scheme 3). Thus, double α-alkylation of the ethyl acetate group with LDA/MeI resulted in dimethylated $\mathbf{1 3}$ in a 72% yield. Unfortunately, attempts to directly reduce the ester group in $\mathbf{1 3}$ to aldehyde by DIBAL failed due to a lack of functional group selectivity between the ester group and the oxazolidinone group. After screening several reducing reagents, LiBH_{4} was found to be a good choice for reducing reagent to produce alcohol 14 in a 61% yield. Oxidation of the hydroxyl group in 14 with Dess-Martin reagent, followed by Wittig reaction, furnished olefin 16 in a 93% yield.
(10) Yamada, S.; Shioiri, T.; Itaya, T.; Hara, T.; Matsueda, R. Chem. Pharm. Bull. 1965, 13, 88.

SCHEME 3. Synthesis of Compounds 21a and 21b ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) LDA, MeI, THF, $-78{ }^{\circ} \mathrm{C}$ to rt; (b) LDA, MeI, THF, $-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 72 \%$ from $\mathbf{4 a}$; (c) $\mathrm{LiBH}_{4}, \mathrm{THF} / \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 61 \%$; (d) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 92%; (e) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{MeI}^{-}, \mathrm{LiHMDS}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to rt, 93\%; (f) ${ }^{t} \mathrm{BuOK}$, aq ${ }^{t} \mathrm{BuOH}$, rt, quantitative yield; (g) (Boc$)_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 95%, (h) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 92%; (i) PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 76%; (j) NaClO_{2}, $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ buffer, rt, quantitative yield; (k) $\mathrm{ClCOO}^{i} \mathrm{Bu}, \mathrm{Et}_{3} \mathrm{~N}$, D-Ala-OMe, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 81 \%$.

Construction of the D-ring by condensation with D -alanine required transformation of oxazolidinone group in 16 to a protected aminocarboxy group (Scheme 3). Opening of the oxazolidinone ring in $\mathbf{1 6}$ with ${ }^{t} \mathrm{BuOK}$ and aqueous ${ }^{t} \mathrm{BuOH}$, followed by protection of the resulting amino group with $\mathrm{Boc}_{2} \mathrm{O}$, resulted in alcohol 17 in an excellent yield for the two steps. Initially, it was planned to oxidize both the hydroxyl group and the methyl group in $\mathbf{1 7}$ into an acidic group and a formamido group (20) in a single-step reaction. However, a number of oxidation reagents and conditions were tried, but all attempts to realize this direct transformation failed because of the easy formation of an N -oxide functionality on the indoline nitrogen under the oxidation conditions tested. Therefore, a stepwise oxidation of $\mathbf{1 7}$ had to be conducted. As a result, the hydroxyl group in 17 was first oxidized with Dess-Martin reagent to give a mixture of two rotamers $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ in a 92% yield and a $1: 2$ ratio. The N-methyl group in $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ was then oxidized with PCC to an N-formal group to give rotamers $\mathbf{1 9 a}$ and $\mathbf{1 9 b}$ in a 76% yield. Treatment of the mixture of $\mathbf{1 9 a}$ and $\mathbf{1 9 b}$ with NaClO_{2} in a $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ buffer provided a mixture of two rotamers $20 \mathbf{a}$ and 20 b in a quantitative yield. Condensation of 20a and 20b with D-alanine methyl ester in the presence of isobutyl chloroformate and triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded rotamers 21a and $\mathbf{2 1 b}$ in an 81% yield.

After the Boc group was removed by TMSI, ${ }^{6 a}$ the ratio of rotamers changed from 1:2 in $\mathbf{2 1}$ to $1: 5$ in $\mathbf{2 2}$ because of partial release of the aminal rigidity (Scheme 4). With a congested formal group on the indoline nitrogen of 22 , cyclization of the D-ring by using a solution of saturated methanolic ammonia and a catalytic quantity of DMAP exclusively yielded the amide

SCHEME 4. Synthesis of Compounds 26a and 26b ${ }^{\boldsymbol{a}}$

${ }^{a}$ Reagents and conditions: (a) TMSI, $\mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}, 98 \%$; (b) $\mathrm{MeOH} /$ NH_{3}, DMAP, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 86 \%$; (c) LiOH , aq. $\mathrm{MeOH}, 95 \%$ yield; (d) $\mathrm{ClCOO}^{i} \mathrm{Bu}, \mathrm{Et}_{3} \mathrm{~N}$, D-Ala-OMe, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 71% of 23a and 23b.

SCHEME 5. Synthesis of Ardeemins ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) 2 equiv of ${ }^{n} \mathrm{BuLi}$, o-azidobenzoic anhydride, THF, $-78^{\circ} \mathrm{C}, 86 \%$ of 27 and 28 in a $1: 1$ ratio; (b) 2 equiv of ${ }^{n} \mathrm{BuLi}$, o-azidobenzoic anhydride, THF, $-78^{\circ} \mathrm{C}, 33 \%$ of 27 and 28 in a $1: 1$ ratio; (c) ${ }^{n} \mathrm{Bu}_{3} \mathrm{P}$, benzene, rt, 93%; (d) $\mathrm{Ac}_{2} \mathrm{O}$, DIPEA, $60^{\circ} \mathrm{C}$, benzene. ${ }^{6}$
$\mathbf{2 3}$, only trace amount of $\mathbf{2 6}$ was formed. We then turned our efforts of D-ring cyclization to the aid of coupling agents. After hydrolysis of $\mathbf{2 2}$ with LiOH in aqueous MeOH , the resulting acid 24 was treated with $\mathrm{ClCOO}^{\prime} \mathrm{Bu}^{\prime} \mathrm{Et}_{3} \mathrm{~N}$ to afford two separable diketopiperazines 26a and C8-epi-26b in a 71% yield and a 1:1 ratio. Rotamerism caused by the formal group in $\mathbf{2 6}$ was eliminated after the D-ring was formed. Epimerization at C8 for 26b probably proceeded through a ketene intermediate $\mathbf{2 5}$. The relative configuration between C8 and C15b in 26a and 26b was unambiguously confirmed by noe experiments.
A strategy similar to Danishefsky's E-ring construction was adopted (Scheme 5). ${ }^{6}$ Condensation of diketopiperazine 26a with o-azidobenzoic anhydride under a strong basic condition at low temperature provided azido 27 and deformal azido 28 in an 86% yield and $1: 1$ ratio. Interestingly, although the yield was low (33% yield), the epimerized $\mathbf{2 6 b}$ also afforded azido 27 and 28 in a 1:1 ratio under the same condensation condition. Obviously,
thermodynamically favorable products 27 and 28 were produced from 26b via an enolate intermediate 29 after quenching the reaction. Treatment of $\mathbf{2 7}$ and $\mathbf{2 8}$ with ${ }^{n} \mathrm{Bu}_{3} \mathrm{P}$ accomplished the total synthesis of $(-)$ - N -formalardeemin 30 and $(-)$-ardeemin 1. $(-)$ - N -Acetylardeemin 2 was prepared from (- -ardeemin $\mathbf{1}$ by using the published procedure. ${ }^{6 b}$

Conclusion

In summary, total synthesis of indole alkaloid (-)-ardeemin, $(-)$ - N -formalardeemin, and (-)- N -acetylardeemin has been accomplished from L-tryptophan with about 2% overall yield in 20 steps. The key step depended on our recently developed three-step one-pot cascade reaction of intermolecular cyclopropanation, ring opening, and ring closure to assemble the chiral 3 -substituted hexahydropyrrolo[2,3-b]indole with three stereocenters corresponding to $(-)$-ardeemin. Current synthesis has provided a practicable route to prepare analogues of (-)ardeemin for further SAR studies of anti-MDR activity.

Experimental Section

Improved Synthesis of Oxazolidinone 7 and 4a. Oxazolidinone 7. ${ }^{9}$ Compound 11 ($150 \mathrm{~g}, 0.69 \mathrm{~mol}$) was suspended in anhydrate THF. The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath, and then $\mathrm{LiAlH}_{4}(78.7 \mathrm{~g}, 2.07 \mathrm{~mol})$ was slowly added within 4 h . After reflux for 2 h , the reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and extracted with EtOAc ($500 \mathrm{~mL} \times 6$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the red residue.

The above residue was dissolved in THF (200 mL) and a solution of $\mathrm{KOH}(200 \mathrm{~g}, 3.6 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(2,000 \mathrm{~mL})$ was added. At $0^{\circ} \mathrm{C}$, a solution of triphosgene ($205 \mathrm{~g}, 0.69 \mathrm{~mol}$) in THF (500 mL) was slowly added to the above mixture. The reaction was then allowed to warm to room temperature and stirred for 8 h . The mixture was diluted with water (500 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL} \times$ 3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and recrystallized from EtOAc to give oxazolidinone 7 as a white solid ($124 \mathrm{~g}, 78 \%$ yield): $[\alpha]^{20}{ }_{\mathrm{D}}$ $=-50^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.04-2.97(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.46(\mathrm{~m}, 1 \mathrm{H})$, $5.29(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H})$.

Hexahydropyrroloindoles 4a and 4b. ${ }^{9}$ Under N_{2}, to a solution of $7(50 \mathrm{~g}, 0.22 \mathrm{~mol})$ and a freshly made $\mathrm{CuOTf}-$ toluene complex $(25 \mathrm{~g}, 0.043 \mathrm{~mol})^{12}$ in dry toluene (200 mL) was slowly added a solution of diazo $\mathbf{8}(100 \mathrm{~g}, 0.88 \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1000 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 6 h and then was concentrated. The residue was purified by flash chromatography ($17 \% \mathrm{EtOAc} /$ petroleum) to afford $\mathbf{4 a}(31 \mathrm{~g}, 45 \%$ yield) and $\mathbf{4 b}$ ($19 \mathrm{~g}, 28 \%$ yield). ${ }^{9}$

4a: $[\alpha]^{20}{ }_{\mathrm{D}}=-175^{\circ}\left(c 1.0, \mathrm{CHC1}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=$
(11) The minor isomer $\mathbf{4 b}$ has the same absolute configurations at $\mathrm{C} 2, \mathrm{C} 3$, and C11 corresponding to natural indole alkaloids epi-aszonalenins A, B and C; see: Rank, C.; Phipps, R. K.; Harris, P.; Frisvad, J. C.; Gotfredsen, C. H.; Larsen, T. O. Tetrahedron Lett. 2006, 47, 6099.

epi-aszonalenins $A, R=C O M e$
epi-aszonalenins $\mathrm{B}, \mathrm{R}=\mathrm{CHO}$
epi-aszonalenins $\mathrm{C}, \mathrm{R}=\mathrm{H}$
(12) CuOTf-toluene was freshly prepared from trifluoromethanesulfonic anhydride and $\mathrm{Cu}_{2} \mathrm{O}$ in toluene. Cohen, T.; Ruffner, R. J.; Shull, D. W.; Fogel, E. R.; Falck, J. R. Org. Synth. 1979, 59, 202.
12.0, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.92(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.09(\mathrm{~m}, 3 \mathrm{H})$, $4.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.69 (td, $J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$.

4b: $[\alpha]^{20}{ }_{\mathrm{D}}=+22^{\circ}\left(c \quad 1.0, \mathrm{CHC1}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.93(\mathrm{dd}, J=12.4,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{dd}, J=8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.37-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}$, $1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.00$ $(\mathrm{m}, 1 \mathrm{H}), 7.16(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$.
Synthesis of Compounds 21a and 21b. Dimethylated 13. Under N_{2}, LDA (lithium diisopropylamide, 2.5 M in THF, 19 mL) was slowly dropped to a stirred solution of $\mathbf{4 a}(5 \mathrm{~g}, 15.8 \mathrm{mmol})$ in THF (100 mL) at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then MeI ($5.1 \mathrm{~mL}, 79.1 \mathrm{mmol}$) was added. After the mixture was stirred for 8 h , and the reaction was quenched by the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by flash chromatography (17% $\mathrm{EtOAc} /$ petroleum) to give a yellowish residue.

Under N_{2}, the above residue was dissolved in THF (100 mL) at $-78^{\circ} \mathrm{C}$. LDA (2.5 M in THF, 19 mL) was slowly dropped to the solution. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, \mathrm{MeI}(5.1$ $\mathrm{mL}, 79.1 \mathrm{mmol}$) was added, and then the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 1 h . The reaction was allowed to warm to room temperature and stirred overnight. The reaction was quenched by addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(50 \mathrm{~mL})$ and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give a yellowish residue. Flash chromatography ($17 \% \mathrm{EtOAc} /$ petroleum) of the residue yielded dimethylated $\mathbf{1 3}$ as a pale yellow solid ($3.91 \mathrm{~g}, 72 \%$ yield), mp $110-111^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=-241^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2,3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 2.21$ (dd, $J=22.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ $(\mathrm{s}, 3 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 3 \mathrm{H}), 4.36(\mathrm{dd}, J=$ $8.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=7.6,1 \mathrm{H}), 6.67(\mathrm{td}, J=$ $7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{td}, J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,21.9,22.0,30.8$, $40.7,47.0,58.6,61.0,64.1,66.9,85.8,106.0,117.2,124.5,128.8$, 129.3, 151.6, 160.3, 175.7; HRMS-ESI calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+} 367.1628$, found 367.1630; IR (KBr) 1759, 1603, 1472, $1045 \mathrm{~cm}^{-1}$.

Alcohol 14. To a solution of dimethylated $\mathbf{1 3}(3.441 \mathrm{~g}, 10 \mathrm{mmol})$ in THF (100 mL) and $\mathrm{MeOH}(0.8 \mathrm{~mL}, 20 \mathrm{mmol})$ was added LiBH_{4} $(436 \mathrm{mg}, 20 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under N_{2}. After stirring at $0^{\circ} \mathrm{C}$ for 4 h , the reaction was quenched by an ice-cold saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(100 \mathrm{~mL})$ and extracted with EtOAc $(100 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine (200 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum to give a yellow residue. Purification of the residue by column chromatography $(67 \% \mathrm{EtOAc} /$ petroleum) afforded alcohol $\mathbf{1 4}$ as a colorless solid ($1.844 \mathrm{~g}, 61 \%$ yield), $\mathrm{mp} 196-198{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=-273^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{dd}, J=$ $12.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (dd, $J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (s br, $1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=$ $8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=8.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 6.54$ (d, $J=8.0,1 \mathrm{H}), 6.79(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.8$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.1,21.6,29.7,31.6,39.9,58.4,64.8,67.0,70.4,85.5$, 107.9, 118.8, 124.4, 129.1, 130.7, 151.2, 160.6; HRMS-ESI calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 325.1523$, found 325.1516; IR (KBr) $3471,1740,1402,1246,1048 \mathrm{~cm}^{-1}$.

Aldehyde 15. To a solution of alcohol 14 ($1.512 \mathrm{~g}, 5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added Dess-Martin reagent (Dess-Matrin periodinane, $2.544 \mathrm{~g}, 6 \mathrm{mmol}$) at room temperature. After stirring
at room temperature for 1 h , the reaction was quenched by saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (100 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL} \times 3)$. The combined organic layers were washed with saturated NaHCO_{3} solution $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuum. The residue was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ petroleum) to give aldehyde $15(1.382 \mathrm{~g}, 92 \%$ yield $), \mathrm{mp} 115-116^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=$ $-85^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.12(\mathrm{~s}, 3 \mathrm{H})$, $1.19(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{dd}, J=12.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=12.0$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=9.2$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=9.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}$, $J=8.0,1 \mathrm{H}), 6.70(\mathrm{td}, J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.6,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.8,18.9,31.0,39.7,49.5,58.5,62.9,66.9$, 85.1, 106.5, 117.8, 124.5, 128.5, 129.5, 151.4, 160.4, 204.3; HRMSESI calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 323.1366$, found 323.1361; IR (KBr) 3441, 1746, 1389, $1190 \mathrm{~cm}^{-1}$.

Olefin 16. To a solution of $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{MeI}^{-}(835 \mathrm{mg}, 2.07 \mathrm{mmol})$ in THF (50 mL) at $-78^{\circ} \mathrm{C}$ was dropped LiHMDS (lithium hexamthyldisilazide, 1 M in $\mathrm{THF}, 2.3 \mathrm{~mL}$). After stirring at $0^{\circ} \mathrm{C}$ for 1 h , the solution was cooled to $-78^{\circ} \mathrm{C}$ again and was added dropwise a solution of adehyde $\mathbf{1 5}(400 \mathrm{mg}, 1.33 \mathrm{mmol})$ in THF. The reaction was stirred overnight and allowed to warm to room temperature slowly. The reaction was quenched by addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with EtOAc (50 $\mathrm{mL} \times 3$). The combined organic phases were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to give a residue. Flash chromatography ($17 \% \mathrm{EtOAc} /$ petroleum) of the residue yielded olefin 16 as a white solid ($368 \mathrm{mg}, 93 \%$ yield), mp $83-85^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=-348^{\circ}$ (c 1.0, CHCl_{3}) ; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{dd}, J=12.0,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.19(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.61(\mathrm{~m}$, $1 \mathrm{H}), 4.18$ (dd, $J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=8.8,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07(\mathrm{dd}, J=17.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=$ $8.0,1 \mathrm{H}), 6.67(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 22.5,23.3,30.9,39.9,40.7,58.6,65.5,66.8,85.3,105.9,114.3$, $117.1,124.7,128.9,129.8,143.7,151.7,160.3$; HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 321.1574$, found 321.1570; IR (KBr) 1755, 1746, 1604, $1190 \mathrm{~cm}^{-1}$.

Alcohol 17. To a solution of olefin $16(300 \mathrm{mg}, 1.01 \mathrm{mmol})$ in aqueous ${ }^{t} \mathrm{BuOH}(20 \mathrm{~mL})$ was added ${ }^{t} \mathrm{BuOK}(452 \mathrm{mg}, 4.04 \mathrm{mmol})$ in one portion at room temperature. After stirring for 4 h , the mixture was diluted with EtOAc $(50 \mathrm{~mL})$, washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuum. The residue was purified by column chromatography $(9 \% \mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield amino alcohol as viscous liquid.

To a solution of the above amino alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}$ (di-tert-butyl dicarbonate, $872 \mathrm{mg}, 4.00 \mathrm{mmol}$). After stirring at room temperature overnight, the mixture was concentrated and purified by column chromatography ($17 \% \mathrm{EtOAc} /$ petroleum) to give alcohol 17 ($353 \mathrm{mg}, 95 \%$ yield) as a white solid, $\operatorname{mp} 88-90^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=-232^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}$ br, 1 H$), 1.95-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.61(\mathrm{~m}, 2 \mathrm{H})$, $5.09(\mathrm{dd}, J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=10.8,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.25(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.6$, $1 \mathrm{H}), 6.65(\mathrm{t}, J=7.2,1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=$ 7.6, $0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.2,23.0,28.5$, $34.3,37.5,40.9,60.1,61.9,63.9,81.0,85.6,106.0,113.6,117.1$, 124.4, 128.6, 130.8, 144.2, 152.1, 154.9; HRMS-ESI calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 395.2311$, found 395.2305; IR (KBr) $3422,1680,1604,1409,1075,750 \mathrm{~cm}^{-1}$.

Aldehydes 18a and 18b. To a solution of alcohol 17 (300 mg , $0.81 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added Dess-Martin reagent $(512 \mathrm{mg}, 1.21 \mathrm{mmol})$ at room temperature. After stirring at room temperature for 2 h , the reaction was quenched by saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (50 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$. The
combined organic layers were washed with saturated NaHCO_{4} solution (100 mL) and brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuum. The residue was purified by flash chromatography ($17 \% \mathrm{EtOAc} /$ petroleum) to give a mixture of two aldehydes $18 \mathbf{a}$ and $\mathbf{1 8 b}\left(274 \mathrm{mg}, 92 \%\right.$ yield), $[\alpha]^{20}{ }_{\mathrm{D}}=-242^{\circ}(c$ $\left.0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; a mixture of two rotamers in a $1: 2$ ratio) $\delta 0.94$ (rotamer A and $\mathrm{B} ; \mathrm{s}, 3 \mathrm{H}$), 1.08 (rotamer A and $\mathrm{B} ; \mathrm{s}, 3 \mathrm{H}), 1.40$ (rotamer $\mathrm{B} ; \mathrm{s}, 9 \mathrm{H}$), 1.54 (rotamer $\mathrm{A} ; \mathrm{s}, 9 \mathrm{H}$), 2.23-2.04 (rotamer A and $\mathrm{B} ; \mathrm{m}, 2 \mathrm{H}$), 3.02 (rotamer $\mathrm{A} ; \mathrm{s}, 3 \mathrm{H}$), 3.08 (rotamer $\mathrm{B} ; \mathrm{s}, 3 \mathrm{H}$), 3.78-3.72 (rotamer A and $\mathrm{B} ; \mathrm{m}, 1 \mathrm{H}$), 5.15-5.05 (rotamer A and B; m, 2H), 5.17 (rotamer A; s, 1H), 5.37 (rotamer B; s, 1H), 5.91 (rotamer A and B; dd, $J=17.2$, 7.2 $\mathrm{Hz}, 1 \mathrm{H}$), 6.40-6.37 (rotamer A and B; m, 1H), 6.71-6.66 (rotamer A and $\mathrm{B} ; \mathrm{m}, 1 \mathrm{H}), 7.05$ (rotamer A and $\mathrm{B} ; \mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.17-7.13 (rotamer A and B; m, 1H), 9.22 (rotamer B; d, $J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 9.33 (rotamer A; d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}; a mixture of two rotamers in a $1: 2$ ratio) rotamer $\mathrm{B}: \delta 14.1$, $22.6,22.8,28.1,29.6,33.6,41.1,62.0,64.7,79.1,82.0,109.2$, $114.4,118.4,124.7,128.8,143.6,149.8,153.5,196.5$; rotamer A: $\delta 14.1,22.6,22.8,28.5,29.3,33.1,41.1,63.4,64.9,78.3,82.0$, $109.1,114.4,118.9,123.1,129.3,143.1,149.3,153.5,196.5$; HRMS-ESI calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 393.2154$, found 393.2149 ; IR (KBr) 1740, 1696, 1464, 1367, 1260, $803 \mathrm{~cm}^{-1}$.
N-Formals 19a and 19b. To a solution of aldehydes 18a and 18b ($200 \mathrm{mg}, 0.54 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added PCC (pyridinium chlorochromate, $233 \mathrm{mg}, 1.08 \mathrm{mmol}$) at room temperature. After stirring at room temperature for 4 h , the reaction was concentrated and purified by flash chromatography (50\% $\mathrm{EtOAc} /$ petroleum) to give a mixture of N-formals 19a and 19b (158 $\mathrm{mg}, 76 \%$ yield $),[\alpha]^{20}{ }_{\mathrm{D}}=-72^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}; a mixture of two rotamers in a $1: 2$ ratio) $\delta 0.97$ (rotamer $\mathrm{B} ; \mathrm{s}, 3 \mathrm{H}), 1.11$ (rotamer B; s, 3H), 1.13 (rotamer A; s, 3H), 1.25 (rotamer A; s, 3H), 1.39 (rotamer B; s, 9H), 1.54 (rotamer A; s, 9 H), 2.27-2.22 (rotamer A and B; m, 2H), 3.73-3.68 (rotamer A and $\mathrm{B} ; \mathrm{m}, 1 \mathrm{H}), 5.10$ (rotamer A and $\mathrm{B} ; \mathrm{d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (rotamer A and B; d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ (rotamer A; s, 1H), 5.88 (rotamer B; s, 1H), 5.90-5.80 (rotamer A and B; m, 1H), 7.16 (rotamer A and B; q, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30-7.24$ (rotamer A and $\mathrm{B} ; \mathrm{m}, 1 \mathrm{H}), 7.35$ (rotamer A and $\mathrm{B} ; \mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (rotamer A; d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.01 (rotamer B; d, $J=8.0 \mathrm{~Hz}$, 1 H), 8.68 (rotamer A; s, 1H), 8.93 (rotamer B; s, 1H), 9.26 (rotamer $\mathrm{B} ; \mathrm{d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 9.35 (rotamer A; d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$; a mixture of two rotamers in a 1:2 ratio) rotamer B: $\delta 14.1,22.1,23.1,29.3,29.9,31.9,33.3,41.1,64.4$, $78.7,83.0,115.2,115.7,116.5,117.6,124.7,129.3,142.6,161.8$, 196.5; rotamer A: $\delta 14.1,22.1,22.7,28.0,28.3,32.1,33.3,41.1$, $64.8,78.2,83.3,115.0,115.7,117.6,116.5,125.1,129.3,142.1$, 161.1, 196.7; HRMS-ESI calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$ 407.1947, found 407.1941; IR (KBr) 1687, 1584, 1439, 1216, 758 cm^{-1}.

Acids 20a and 20b. To a solution of N-formals 19a and 19b $(96 \mathrm{mg}, 0.25 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{3} \mathrm{CN} /{ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(2: 2: 1$, $10 \mathrm{~mL})$ were added $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(117 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaClO}_{2}(136 \mathrm{mg}, 1.5 \mathrm{mmol})$ sequentially. After stirring at room temperature for 0.5 h , the mixture was diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$, washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (50 mL) and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in a vacuum to give a residue. The residue was purified by column chromatography $(9 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield a mixture of acids $\mathbf{2 0 a}$ and $\mathbf{2 0 b}(100 \mathrm{mg}$, 99% yield $),[\alpha]^{20}{ }_{\mathrm{D}}=-158^{\circ}\left(c \quad 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}; a mixture of two rotamers in a $1: 2$ ratio) $\delta 0.97$ (rotamer A and B; s, 3H), 1.08 (rotamer B; s, 3H), 1.10 (rotamer A; s, 3H), 1.37 (rotamer B ; s, 9 H), 1.51 (rotamer A ; s, 9 H), 2.55-2.31 (rotamer A and B; m, 2H), 3.92 (rotamer A and B; dd, $J=9.6,7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.06 (rotamer A and B; d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.13 (rotamer A and $\mathrm{B} ; \mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ (rotamer A; s, 1H), 5.87-5.77 (rotamer A and B; m, 1H), 5.90 (rotamer B; s, 1H), 7.19-7.13 (rotamer A and $\mathrm{B} ; \mathrm{m}, 1 \mathrm{H}$), 7.27-7.24 (rotamer A and $\mathrm{B} ; \mathrm{m}, 1 \mathrm{H}$), 7.34 (rotamer A and B; d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89 (rotamer A; d, J
$=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (rotamer B; d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.65 (rotamer $\mathrm{A} ; \mathrm{s}, 1 \mathrm{H}), 8.91$ (rotamer B; s, 1H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$; a mixture of two rotamers in a $1: 2$ ratio) rotamer $\mathrm{B}: \delta 22.1,23.1$, $29.6,31.8,36.5,41.0,59.3,61.1,78.8,82.1,114.8,117.7,124.7$, 129.2, 133.3, 140.6, 142.6, 162.1, 152.7, 177.4; rotamer A: 22.1, 23.1, 29.6, 31.8, 34.8, 41.0, 59.3, 62.5, 78.3, 83.1, 114.8, 117.7, 125.1, 129.2, 133.3, 140.2, 142.6, 153.1, 161.3, 177.0; HRMSESI calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}-\mathrm{H})^{-}$399.1926, found 399.1920; IR (KBr) 3460, 1688, 1596, 1367, 1150, $755 \mathrm{~cm}^{-1}$.

Amides 21a and 21b. To a solution of acids 20a and 20b (50 $\mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(35 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{ClCOO}^{i} \mathrm{Bu}(33 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ by using a syringe. After stirring for 15 min , to the mixture was added D-AlaOMe (methyl D-alaninate, $25.8 \mathrm{mg}, 0.25 \mathrm{mmol}$), and the mixture was allowed to stir for 1 h at $0^{\circ} \mathrm{C}$. The mixture was then quenched by saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum. The residue was purified by column chromatography (25% $\mathrm{EtOAc} /$ petroleum) to yield a mixture of amides 21a and 21b (49 $\mathrm{mg}, 81 \%$ yield), $[\alpha]^{20_{\mathrm{D}}}=-135^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$; a mixture of two rotamers in a $1: 2$ ratio) $\delta 0.98$ (rotamer A and B; s, 3H), 1.01 (rotamer A and B; s, 3H), 1.33 (rotamer B; s br, 9 H), $1.45-1.39$ (rotamer A and B; m, 3H), 1.50 (rotamer A; s br, 9H), 2.48-2.44 (rotamer A and B; m, 2H), 3.75 (rotamer B; s, 3H), 3.76 (rotamer A; s, 3H), 3.77-3.73 (rotamer A and $B ; m, 1 H$), 4.63-4.58 (rotamer A and B; m, 1H), 5.06 (rotamer A and B; d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.14 (rotamer A and B; d, $J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.70($ rotamer A; s, 1H), 5.86-5.82 (rotamer A and B; $\mathrm{m}, 1 \mathrm{H}), 5.90$ (rotamer B; s, 1H), 6.24 (rotamer A and B; s br, 1 H), 7.16 (rotamer A and B; t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28-7.25 (rotamer A and $\mathrm{B} ; \mathrm{m}, 1 \mathrm{H}$), 7.33 (rotamer A and $\mathrm{B} ; \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89 (rotamer A; s br, 1H), 7.97 (rotamer B; d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.65 (rotamer A; s, 1H), 8.89 (rotamer B; s, 1 H) ; ${ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}; a mixture of two rotamers in a 1:2 ratio) rotamer B: $\delta 18.8$, $22.2,23.0,28.0,29.6,37.3,40.9,47.9,52.5,61.2,79.2,82.2,114.7$, 117.6, 124.7, 129.1, 133.6, 140.9, 142.8, 153.0, 162.0, 170.8, 173.1; rotamer A: $\delta 18.6,22.2,23.0,28.0,29.6,35.5,40.9,47.9,52.5$, $60.8,79.2,82.2,114.7,117.6,124.5,129.1,133.6,140.9,142.8$, 153.0, 161.5, 170.4, 173.1; HRMS-ESI calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+} 508.2418$, found 508.2419; IR (KBr) 3322, 1774, 1681, $1460,1151,756 \mathrm{~cm}^{-1}$.

Synthesis of Compounds 26a and 26b. Compounds 22a and 22b. A mixture of amides 21a and 21b ($33 \mathrm{mg}, 0.068 \mathrm{mmol}$) was dissolved in freshly distilled dry $\mathrm{MeCN}(5 \mathrm{~mL})$, chilled to $0{ }^{\circ} \mathrm{C}$ under N_{2}. To the solution was added TMSI (iodotrimethylsilane, $39 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) dropwise. ${ }^{6}$ After 30 min , the reaction mixture was poured into saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by chromatography ($50 \% \mathrm{EtOAc} /$ petroleum) to give a mixture of 22a and 22b ($26 \mathrm{mg}, 98 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}=$ -47° (c 0.1, CHCl_{3}) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; a mixture of two rotamers in $1: 5$ ratio) $\delta 1.03$ (rotamer A; s, 3H), 1.07 (rotamer $\mathrm{B} ; \mathrm{s}, 6 \mathrm{H}), 1.10$ (rotamer A; s, 3H), 1.40 (rotamer A and B; d, $J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 2.05 (rotamer A and B; s br, 1H), 2.33-2.22 (rotamer A and $B ; m, 2 H), 3.57-3.52$ (rotamer A and $B ; m, 1 H$), 3.76 (rotamer A and B; s, 3H), 4.61-4.53 (rotamer A and B; m, 1H), 5.06 (rotamer A and B; d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.13 (rotamer A and $\mathrm{B} ; \mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (rotamer A; s, 1H), 5.66 (rotamer B; s, 1 H), 5.90 (rotamer A; dd, $J=12.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.94 (rotamer B ; dd, $J=12.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14-7.07 (rotamer A and B; m, 2H), 7.30-7.21 (rotamer A and B; m, 1H), 7.35 (rotamer B; d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (rotamer A; d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.59 (rotamer $\mathrm{A} ; \mathrm{s}, 1 \mathrm{H}), 8.94$ (rotamer B; s, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3 ;}\right.$ a mixture of two rotamers in $1: 5$ ratio) rotamer B: $\delta 18.2,22.5,23.5$, $29.7,40.4,47.2,52.4,60.0,62.2,78.3,108.4,114.4,124.6,126.5$, 128.6, 131.1, 134.3, 143.4, 158.6, 172.6, 173.0; rotamer A: $\delta 19.1$, $22.6,23.3,29.2,39.4,47.5,52.4,60.9,62.2,80.4,108.4,116.2$, $124.9,126.5,128.8,131.1,134.3,141.0,159.4,172.6,173.0$;

HRMS-ESI calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 408.1894$, found 408.1899; IR (KBr) 1740, 1696, 1464, 1367, 1260, $803 \mathrm{~cm}^{-1}$.

Amides 23a and 23b. To a mixture of amides 22a and 22b (2.5 $\mathrm{mg}, 0.006 \mathrm{mmol})$ in MeOH saturated with ammonia $(0.5 \mathrm{~mL}$) at 0 ${ }^{\circ} \mathrm{C}$ was added DMAP (4-dimethylaminopyridine, $0.5 \mathrm{mg}, 0.004$ $\mathrm{mmol})$. The solution was stirred overnight, allowed to warm to room temperature, and concentrated. The residue was purified by flash chromatography ($100 \% \mathrm{EtOAc}$) to give a mixture of amides 23a and 23b ($2.0 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; a mixture of two rotamers in $1: 4$ ratio) $\delta 0.98$ (rotamer A; s, 3H), 1.02 (rotamer B; s, 3H), 1.07 (rotamer B; s, 3H), 1.10 (rotamer A; s, 3 H), 1.40 (rotamer A and B; d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 2.18-2.08 (rotamer A and B; m, 1H), 2.32 (rotamer B; dd, $J=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (rotamer A; dd, $J=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (rotamer A and B; s br, 1 H), 3.50 (rotamer A; dd, $J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.54 (rotamer B; dd, $J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.44 (rotamer A and B; q, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.06$ (rotamer A and B; d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.14 (rotamer A and B; d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.29 (rotamer A and B; s br, 1H), 5.41 (rotamer A; s, 1H), 5.65 (rotamer B; s, 1H), 5.90 (rotamer A; dd, $J=17.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.93 (rotamer B; dd, $J=17.2,6.8 \mathrm{~Hz}$, 1 H), 6.11 (rotamer A and B; s br, 1H), 7.16-7.08 (rotamer A and B; m, 2H), $7.27-7.22$ (rotamer A and B; m, 1 H), 7.35 (rotamer B; d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (rotamer A; d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.58 (rotamer A; s, 1H), 8.93 (rotamer B; s, 1H).

Diketopiperazines 26a and 26b. To a solution of 22a and 22b ($20 \mathrm{mg}, 0.052 \mathrm{mmol}$) in a $10: 1$ mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added LiOH ($11 \mathrm{mg}, 0.268 \mathrm{mmol}$). After stirring for 4 h , the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography ($17 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give a viscous residue.

To a solution of the above residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(14 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ and $\mathrm{ClCOO}^{i} \mathrm{Bu}(14 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 2 h , the mixture was then quenched by saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum. The residue was purified by column chromatography (50% $\mathrm{EtOAc} /$ petroleum) to yield diketopiperazines $\mathbf{2 6 a}(7.0 \mathrm{mg}, 36 \%$ yield) and 26b ($6.0 \mathrm{mg}, 35 \%$ yield).

26a: $[\alpha]^{20}{ }_{\mathrm{D}}=-162^{\circ}\left(c 0.15, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.43$ (t, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{q}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}$, $1 \mathrm{H}), 6.26(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.3,22.2,23.0,37.4,41.0,53.3,57.7,60.1,77.6,115.5$, $117.0,124.9,129.5,132.0,141.4,142.4,161.7,166.3,167.6$; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 376.1637$, found 376.1629; IR (KBr) 3307, 1744, 1674, 1458, $756 \mathrm{~cm}^{-1}$.

26b: $[\alpha]^{20}{ }_{\mathrm{D}}=-199^{\circ}$ (c 0.15, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.47$ $(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.95$ $(\mathrm{m}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}$, $1 \mathrm{H}), 6.20(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H})$, $8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.4,22.2,23.0,36.5,40.9,51.2,59.0,60.4,77.3,115.3,117.0$, $124.9,129.4,132.2,141.3,142.4,161.6,166.1,168.8$; HRMSESI calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 376.1637$, found 376.1632; IR (KBr) 3307, 1682, 1463, 1375, 1160, $757 \mathrm{~cm}^{-1}$.

Compounds 27 and 28 from 26a. To a solution of diketopiperazine 26a ($10.0 \mathrm{mg}, 0.028 \mathrm{mmol}$) in THF (3 mL) at $-78^{\circ} \mathrm{C}$ under N_{2} was added ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in THF, $22 \mu \mathrm{~L}, 0.055 \mathrm{mmol}$). After stirring for 20 min at $-78^{\circ} \mathrm{C}$, a solution of o-azidobenzoic anhydride ($17 \mathrm{mg}, 0.056 \mathrm{mmol}$) in THF $(0.1 \mathrm{~mL})$ was added via a syringe. After 10 min , the mixture was poured into a biphasic mixture of saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and EtOAc (5 mL). The aqueous layer was separated and extracted with EtOAc ($5 \mathrm{~mL} \times$ 3). The combined organic layers were washed with brine, dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by chromatography ($50 \% \mathrm{EtOAc} /$ petroleum) to give $27(6.3 \mathrm{mg}, 44 \%$ yield) and 28 ($5.7 \mathrm{mg}, 42 \%$ yield).

27: $[\alpha]^{20}{ }_{\mathrm{D}}=-72^{\circ}\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.67-2.53$ (m, 2H), 4.07 (dd, $J=11.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ $(\mathrm{dd}, J=17.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H})$, $7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J$ $=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 9.09$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.4,22.2$, $22.7,37.3,41.1,55.5,59.0,60.5,77.3,115.7,117.2,118.2,124.9$, $125.0,125.4,128.3,129.5,129.7,131.8,132.1,136.3,141.3,142.2$, 161.6, 166.3, 167.8, 168.4; HRMS-ESI calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+} 521.1908$, found 521.1913; IR (KBr) 3342, 2575, 1702, $1430,1103 \mathrm{~cm}^{-1}$.
28: ${ }^{6 \mathrm{a}}[\alpha]^{20}{ }_{\mathrm{D}}=-152^{\circ}\left(c \quad 0.15, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.52$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=10.0$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=$ $16.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=10.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H})$, 5.98 (dd, $J=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ $(\mathrm{td}, J=7.4,7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{td}, J=7.6$, $7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, J=$ $8.2,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.7,22.4$, $22.9,36.9,41.0,55.5,59.1,61.7,77.5,109.3,114.9,118.2,119.0$, $125.0,125.2,128.5,128.6,129.2,131.8,136.4,143.3,149.8,166.7$, 167.9, 169.1.

Compounds 27 and 28 from 26b. To a solution of diketopiperazine 26b ($10.0 \mathrm{mg}, 0.028 \mathrm{mmol}$) in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} was added ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in THF, $22 \mu \mathrm{~L}, 0.055 \mathrm{mmol})$. After 20 min of stirring at $-78^{\circ} \mathrm{C}$, a solution of o-azidobenzoic anhydride ($17.0 \mathrm{mg}, 0.056 \mathrm{mmol}$) in THF (0.1 mL) was added via a syringe. After 10 min , the mixture was poured into a biphasic mixture of saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and EtOAc (5 mL). The aqueous layer was separated and extracted with EtOAc ($5 \mathrm{~mL} \times$ 3). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by chromatography ($50 \% \mathrm{EtOAc} /$ petroleum) to give $27(2.1 \mathrm{mg}, 17 \%$ yield) and 28 ($1.9 \mathrm{mg}, 16 \%$ yield).
Synthesis of Ardeemins. (-)-Ardeemin. ${ }^{1,6 a}$ Under N_{2}, tri $(n-$ butyl)phosphine ($10 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was added to a solution of 28 $(10 \mathrm{mg}, 0.021 \mathrm{mmol})$ in dry benzene $(2 \mathrm{~mL})$. The resulting solution was stirred for overnight under N_{2}, and concentrated. The residue was purified by chromatography ($50 \% \mathrm{EtOAc} /$ petroleum) to yield $(-)$-ardeemin ($8.0 \mathrm{mg}, 93 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}=-122^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.75(\mathrm{dd}, J=12.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=$ $12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.60(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=17.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.0,1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.77$ (ddd, $J=7.0,6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=8.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.9,22.6,22.9,38.2$, 41.0, 53.2, 58.1, 61.8, 77.8, 109.3, 114.6, 118.9, 120.7, 125.1, 127.0, 127.3, 129.1, 134.7, 143.5, 147.2, 149.8, 150.9, 160.1, 166.6.
$(-)$ - N -Formalardeemin. Under N_{2}, tri $(n$-butyl)phosphine (10 $\mu \mathrm{L}, 0.04 \mathrm{mmol})$ was added to a solution of $27(10.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ in dry benzene $(2 \mathrm{~mL})$. The reaction solution was stirred for overnight under N_{2} and concentrated. The residue was purified by chromatography ($50 \% \mathrm{EtOAc} /$ petroleum) to yield (-)- N -formalardeemin ($7.8 \mathrm{mg}, 86 \%$ yield), $[\alpha]^{20}{ }_{\mathrm{D}}=-52^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.73(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57-4.53(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.89(\mathrm{dd}, J=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.10$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 17.5, 22.3, 23.0, 38.7, $41.1,53.2,58.1,60.6,77.3,115.5,117.3,120.5,124.9,125.0,127.0$, 127.2, 127.4, 129.6, 132.3, 134.8, 141.1, 142.4, 147.0, 150.1, 159.8, 161.8, 166.2; HRMS-ESI calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$ 477.1897, found 477.1893; IR (KBr) 3310, 2895, 1715, 1643, 1410, $1367,755 \mathrm{~cm}^{-1}$.
$(-)$ - N -Acetylardeemin. ${ }^{1,6 \mathrm{a}} \mathrm{To}$ a solution of (-)-ardeemin (4 mg , 0.01 mmol) in acetic anhydride (1 mL) was added DIPEA (N, N-diisoproylethylamine, $5 \mu \mathrm{~L}, 0.03 \mathrm{mmol})$. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ for 36 h and then evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by chromatography ($50 \% \mathrm{EtOAc} /$ petroleum) to give (-)-N-acetylardeemin ($3.1 \mathrm{mg}, 72 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}=-49^{\circ}$ (c 0.1 , CHCl_{3}) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.67(\mathrm{~s} \mathrm{br}, 3 \mathrm{H}), 2.69-2.68(\mathrm{~m}, 1 \mathrm{H}), 3.02$ (dd, $J=12.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.43(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.12(\mathrm{~m}$, $2 \mathrm{H}), 5.37(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=16.8,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.08 (s br, 1H), 7.24-7.22 (m, 1H), 7.45-7.42 (m, 2H), 7.55-7.52 $(\mathrm{m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8,1 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{~s} \mathrm{br}$, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.0,1 \mathrm{H})$.

Acknowledgment. This research was supported by NSFC (Nos. 20632030, 20772083, and 20825207). We thank the Analytic and Testing Center of Sichuan University for recording spectroscopic data.

Supporting Information Available: NMR spectra of compounds 7, 4, 13-23, 26-28, (-)-ardeemin, (-)- N -formalardeemin, and (-)- N-acetylardeemin and NOEDS spectra of diketopiperazine 26a and 26b. This material is available free of charge via the Internet at http://pubs.acs.org.
JO802216Z

[^0]: (1) Hochlowski, J. E. M.; Mullally, M.; Spanton, S. G.; Whittern, D. N.; Hill, P.; McAlpine, J. B. J. Antibiot. 1993, 46, 380.
 (2) (a) Chou, T.-C.; Depew, K. M.; Zheng, Y.-H.; Safer, M. L.; Chan, D.; Helfrich, B.; Zatorska, D.; Zatorski, A.; Bornmann, W.; Danishefsky, S. J. PNAS 1998, 95, 8369. (b) Karwowski, J. P.; Jackson, M.; Rasmussen, R. R.; Humphrey, P. E.; Poddig, J. B.; Kohl, W. L.; Scherr, M. H.; Kadam, S.; McAlpine, J. B. J. Antibiot. 1993, 46, 374.
 (3) (a) Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Cancer Res. 1981, 41, 1967. (b) Belpomme, D.; Gauthier, S.; Pujade-Lauraine, E.; Facchini, T.; Goudier, M.-J.; Krakowski, I.; Netter-Pinon, G.; Frenay, M.; Gousset, C.; Marié, F. N.; Benmiloud, M.; Sturz, F. Ann. Oncol. 2000, 11, 1471.

[^1]: (7) (a) Yang, J.; Song, H.; Xiao, X.; Wang, J.; Qin, Y. Org. Lett. 2006, 8, 2187. (b) Yang, J.; Wu, H.-X.; Shen, L.-Q.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794.
 (8) Shen, L.-Q.; Zhang, M.; Wu, Y.; Qin, Y. Angew. Chem. Int. Ed. 2008, 47, 3618.
 (9) Song, H.; Yang, J.; Chen, W.; Qin, Y. Org. Lett. 2006, 8, 6011.

